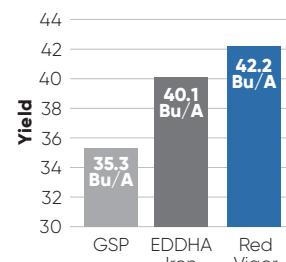


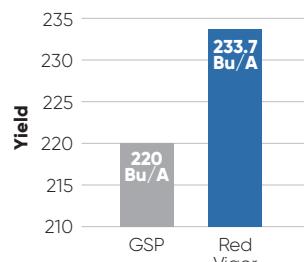
**INNICTIS
BIOSCIENCE**
PLANT HEALTH TECHNOLOGIES

PLANT NUTRIENT

Red Vigor™ is an EDDHSA ortho-ortho chelated form of iron that is extremely stable, more available, and more resistant to degradation especially in high pH soils. Red Vigor supports early iron demand with a proprietary blend of micronutrients and metabolites designed to support and maximize iron availability in soils susceptible to iron deficiency chlorosis (IDC). Red Vigor is designed to maximize iron availability in the soil rhizosphere and prevent iron deficiencies in crops grown in soils with low levels of available iron.


BENEFITS

- 2% Iron
- Easy to handle liquid formulation
- EDDHSA ortho-ortho chelate
- Minimizes stress from IDC
- Higher yield potential and crop quality
- Analysis: 2 Fe - 1.4 S - 0.015 Co


CROP RATES

- **1 pt - 5 qt/A**
- **Application Methods:**
 - In-furrow
 - Broadcast
 - Foliar

Always refer to the product label for Precautionary Language, Directions For Use and Specific Use Rates. Please reach out to your local Innictis rep with additional product questions

Simplot trials over five site years.
Locations: Shelly, MN, Moorhead, MN, and Wallhalla, ND. Shawn Kasprick CCA, CPAg.

Simplot trials over three site years.
Locations: Shelly, MN and Hatfield, MN. Shawn Kasprick CCA, CPAg.

APPLICATION GUIDELINES

A soil test analysis is recommended to determine the iron chlorosis risk potential. Key soil test options should include: pH, calcium carbonates (CCE%), free lime, and salinity. Knowledge of previous field history with a sensitive crop, such as soybeans, will help recognize potential severity and variability of iron chlorosis within the field.

IRON CHLOROSIS RISK POTENTIAL

CCE%	pH 7-9	Salinity mmhos/cm			
		< 0.25	0.25 – 0.50	0.51 – 1.0	> 1.0
	0-2.5 (L)	Low	Low	Moderate	High
	2.6-5.0 (M)	Low	Moderate	High	Very High
	>5.0 (H)	Moderate	High	Very High	Extreme

Agvise Labs

Susceptible		Moderately Susceptible	
Soybeans *	Strawberry †	Corn *	Oats **
Edible Beans *	Raspberry †	Alfalfa **	Barley **
Sorghum †	Apple †	Clover **	Broccoli *
Proso Millet †	Cherry †	Potatoes **	Cauliflower *
Flax †	Peach †	Sugarbeets *	Tomatoes *

* North Dakota State University, University of Minnesota, etc

** University of Idaho

† Colorado State University

‡ University of Manitoba

RECOMMENDED RATES

Susceptible Crops 2.5 Quarts Per Acre	Moderately Susceptible Crops 1 Quart Per Acre
CCE > 2.5%	Increase 1 pint per acre
CCE > 5.0%	Increase 1 quart per acre
Soluble Salts > 0.5 mmhos/cm	Increase 1 pint per acre
Soluble Salts > 1.0 mmhos/cm	Increase 1 quart per acre
High Nitrates	Increase 1 pint per acre